Separate roles of IQGAP Rng2p in forming and constricting the Schizosaccharomyces pombe cytokinetic contractile ring
نویسندگان
چکیده
Eukaryotic cells require IQGAP family multidomain adapter proteins for cytokinesis, but many questions remain about how IQGAPs contribute to the process. Here we show that fission yeast IQGAP Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments. Our work adds to previous studies suggesting a role for Rng2p in node and ring formation. We demonstrate that Rng2p is also required for normal ring constriction and septum formation. Systematic analysis of domain-deletion mutants established how the four domains of Rng2p contribute to cytokinesis. Contrary to a previous report, the actin-binding calponin homology domain of Rng2p is not required for viability, ring formation, or ring constriction. The IQ motifs are not required for ring formation but are important for ring constriction and septum formation. The GTPase-activating protein (GAP)-related domain is required for node-based ring formation. The Rng2p C-terminal domain is the only domain essential for viability. Our studies identified several distinct functions of Rng2 at multiple stages of cytokinesis.
منابع مشابه
IQGAP-Related Rng2p Organizes Cortical Nodes and Ensures Position of Cell Division in Fission Yeast
Correct positioning of the cell division machinery is crucial for genomic stability and cell fate determination. The fission yeast Schizosaccharomyces pombe, like animal cells, divides using an actomyosin ring and is an attractive model to study eukaryotic cytokinesis. In S. pombe, positioning of the actomyosin ring depends on the anillin-related protein Mid1p. Mid1p arrives first at the medial...
متن کاملRewiring Mid1p-Independent Medial Division in Fission Yeast
Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes ...
متن کاملPxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast.
Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyc...
متن کاملRng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body
BACKGROUND An actomyosin-based contractile ring plays a pivotal role in cytokinesis. Despite the identification of many components of the ring, the steps involved in its assembly are unknown. The fission yeast Schizosaccharomyces pombe is an attractive organism in which to study cytokinesis because its cell cycle has been well characterized; it divides by medial fission using an actomyosin ring...
متن کاملSpatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis.
Microscopy of fluorescent fusion proteins and genetic dependencies show that fission yeast assemble and constrict a cytokinetic contractile ring in a precisely timed, sequential order. More than 90 min prior to separation of the spindle pole bodies (SPB), the anillin-like protein (Mid1p) migrates from the nucleus and specifies a broad band of cortex around the equator as the division site. Betw...
متن کامل